
Lesson 19.

Solving the points-after-touchdown problem
Before we begin— upgrading and importing stochasticdp

● I’ve made some improvements to the internals of stochasticdp.

● To upgrade, open a WinPython Command Prompt and type:

pip install --upgrade stochasticdp

● Now we can import StochasticDP from stochasticdp:

In [2]: from stochasticdp import StochasticDP

Setting up the data
● In Lesson 18, we worked with the following data:

T = total number of possessions

pn = Pr{1-pt. conv. successful for Team n ∣ 1-pt. conv. attempted by Team n} for n = A, B
qn = Pr{2-pt. conv. successful for Team n ∣ 2-pt. conv. attempted by Team n} for n = A, B

b1 = Pr{1-pt. conv. attempted by Team B}
b2 = Pr{2-pt. conv. attempted by Team B}

tn = Pr{TD by Team n in 1 possession} for n = A, B
gn = Pr{FG by Team n in 1 possession} for n = A, B
zn = Pr{no score by Team n in 1 possession} for n = A, B

r = Pr{Team A wins in overtime}

● Let’s begin by de�ning numerical values for this data.

● We can �nd most of these values from Pro Football Reference.

● For now, let’s assume that Team A and Team B are both average 2014 NFL teams.

○ Recall that in 2014, 1-pt. conversions started at the 2-yard line.

● Also, let’s assume that Team A wins in overtime with probability 0.5.

In [3]: # Total number of possessions
# Drive Averages: 2 * (#Dr) / (G * (# of teams))
T = 23

# 1-pt. conversion success probabilities
# Kicking and Punting: XP%
pA = 0.993
pB = 0.993
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# 2-pt. conversion success probabilities
# Scoring Offense: 2PM / 2PA
qA = 0.483
qB = 0.483

# 1-pt. vs 2-pt attempts
# 1-pt.: Scoring Offense: XPA / (XPA + 2PA)
b1 = 0.954
b2 = 1 - b1

# Possession outcome probabilities - Team A
# TD: (Scoring Offense: ATD) / (Drive Averages: #Dr)
# FG: (Scoring Offense: FGM) / (Drive Averages: #Dr)
tA = 0.218
gA = 0.172
zA = 1 - tA - gA

# Possession outcome probabilities - Team B
tB = 0.218
gB = 0.172
zB = 1 - tB - gB

# Probability that Team A wins in OT
r = 0.5

Initializing the stochastic dynamic program

● Stages:

t = 0, 1, . . . , T − 1 ↔ end of possession t
t = T ↔ end of game

In [4]: # Number of stages
number_of_stages = T + 1

● States:

(n, k, d) ↔ Team n’s possession just ended for n ∈ {A, B}
Team n just scored k points for k ∈ {0, 3, 6}
Team A is ahead by d points for d ∈ {. . . ,−1, 0, 1, . . . , }

● In Lesson 18, we did not assume a lower or upper bound on d, the values that represent Team A’s lead.

● Since we need to have a �nite number of states, let’s assume −20 ≤ d ≤ 20.

● Some Python reminders:

○ We can construct a list by
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◇ �rst creating an empty list,
◇ and then adding items to it using .append().

○ For example:

my_list = []

for i in range(10):

my_list.append(i)

○ range(a) iterates over the integers 0, 1, ..., a - 1, while range(a, b) iterates over the integers a, a + 1,

..., b - 1.

In [5]: # Maximum lead for Team A
max_d = 20

# List of states
states = []
for n in ['A', 'B']:

for k in [0, 3, 6]:
for d in range(-max_d, max_d + 1):

states.append((n, k, d))

● Allowable decisions xt at stage t and state (n, k, d):

xt ∈ {1, 2} if n = A and k = 6
xt = none if n = A and k ∈ {0, 3}
xt = none if n = B and k ∈ {0, 3, 6}

In [6]: # List of decisions
decisions = [1, 2, 'none']

● Now we can initialize a stochastic DP object called dp as follows:

In [7]: # Initialize stochastic dynamic program - we want to maximize, so minimize = False
dp = StochasticDP(number_of_stages, states, decisions, minimize=False)

Transition probabilities from stages t = 0, 1, . . . , T − 2

● First, let’s tackle transitions from the state (A, 6, d) for d = −20, . . . , 20 in stages t = 0, 1, . . . , T − 2:

● In Lesson 18, we assumed that d could take on an in�nite number values.

● On the other hand, here, we have limited d to be between −20 and 20.

● How does this change our transition probabilities?

● For example, suppose d = −17 in the diagram above. ¿en we can model the transition probabilities like this:
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State (A, 6, d)
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State (A, 6,−17) under decision xt = 1

● In other words, if d is supposed to be less than −20, then we simply assume that it is the same as having d = −20.

● We can do the same thing when d is supposed to be greater than 20.

● To implement this easily, we can de�ne the transition probabilities like in the cell below.

● Notes.

○ In Python,
a += 3

is the same as
a = a + 3

○ Remember that the transition probabilities and contributions are all initialized to 0.

In [8]: # Transition probabilities from (A, 6, d) up to stage T - 2
for t in range(T - 1):

for d in range(-max_d, max_d + 1):
# 1-point conversion
dp.transition[('B', 6, max(d - 6, -max_d)), ('A', 6, d), t, 1] += (1 - pA) * tB
dp.transition[('B', 6, max(d - 5, -max_d)), ('A', 6, d), t, 1] += pA * tB
dp.transition[('B', 3, max(d - 3, -max_d)), ('A', 6, d), t, 1] += (1 - pA) * gB
dp.transition[('B', 3, max(d - 2, -max_d)), ('A', 6, d), t, 1] += pA * gB
dp.transition[('B', 0, d), ('A', 6, d), t, 1] += (1 - pA) * zB
dp.transition[('B', 0, min(d + 1, max_d)), ('A', 6, d), t, 1] += pA * zB

# 2-point conversion
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dp.transition[('B', 6, max(d - 6, -max_d)), ('A', 6, d), t, 2] += (1 - qA) * tB
dp.transition[('B', 6, max(d - 4, -max_d)), ('A', 6, d), t, 2] += qA * tB
dp.transition[('B', 3, max(d - 3, -max_d)), ('A', 6, d), t, 2] += (1 - qA) * gB
dp.transition[('B', 3, max(d - 1, -max_d)), ('A', 6, d), t, 2] += qA * gB
dp.transition[('B', 0, d), ('A', 6, d), t, 2] += (1 - qA) * zB
dp.transition[('B', 0, min(d + 2, max_d)), ('A', 6, d), t, 2] += qA * zB

● In a similar fashion, we can de�ne the remaining transition probabilities.

● From states (A, 3, d) for d = −20, . . . , 20 in stages t = 0, 1, . . . , T − 2:

State (A, 3, d)

In [9]: # Transition probabilities from (A, 3, d) up to stage T - 2
for t in range(T - 1):

for d in range(-max_d, max_d + 1):
dp.transition[('B', 6, max(d - 6, -max_d)), ('A', 3, d), t, 'none'] += tB
dp.transition[('B', 3, max(d - 3, -max_d)), ('A', 3, d), t, 'none'] += gB
dp.transition[('B', 0, d), ('A', 3, d), t, 'none'] += zB

● From states (A, 0, d) for d = −20, . . . , 20 in stages t = 0, 1, . . . , T − 2:

State (A, 0, d)

In [10]: # Transition probabilities from (A, 0, d) up to stage T - 2
for t in range(T - 1):

for d in range(-max_d, max_d + 1):
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dp.transition[('B', 6, max(d - 6, -max_d)), ('A', 0, d), t, 'none'] += tB
dp.transition[('B', 3, max(d - 3, -max_d)), ('A', 0, d), t, 'none'] += gB
dp.transition[('B', 0, d), ('A', 0, d), t, 'none'] += zB

● From states (B, 6, d) for d = −20, . . . , 20 in stages t = 0, 1, . . . , T − 2:

State (B, 6, d)

In [11]: # Transition probabilities from (B, 6, d) up to stage T - 2
for t in range(T - 1):

for d in range(-max_d, max_d + 1):
dp.transition[('A', 6, min(d + 6, max_d)), ('B', 6, d), t, 'none'] += (1 - b1*pB - b2*qB) * tA
dp.transition[('A', 3, min(d + 3, max_d)), ('B', 6, d), t, 'none'] += (1 - b1*pB - b2*qB) * gA
dp.transition[('A', 0, d), ('B', 6, d), t, 'none'] += (1 - b1*pB - b2*qB) * zA

dp.transition[('A', 6, min(d + 5, max_d)), ('B', 6, d), t, 'none'] += b1 * pB * tA
dp.transition[('A', 3, min(d + 2, max_d)), ('B', 6, d), t, 'none'] += b1 * pB * gA
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dp.transition[('A', 0, max(d - 1, -max_d)), ('B', 6, d), t, 'none'] += b1 * pB * zA

dp.transition[('A', 6, min(d + 4, max_d)), ('B', 6, d), t, 'none'] += b2 * qB * tA
dp.transition[('A', 3, min(d + 1, max_d)), ('B', 6, d), t, 'none'] += b2 * qB * gA
dp.transition[('A', 0, max(d - 2, -max_d)), ('B', 6, d), t, 'none'] += b2 * qB * zA

● From states (B, 3, d) for d = −20, . . . , 20 in stages t = 0, 1, . . . , T − 2:

State (B, 3, d)

In [12]: # Transition probabilities from (B, 3, d) up to stage T - 2
for t in range(T - 1):

for d in range(-max_d, max_d + 1):
dp.transition[('A', 6, min(d + 6, max_d)), ('B', 3, d), t, 'none'] += tA
dp.transition[('A', 3, min(d + 3, max_d)), ('B', 3, d), t, 'none'] += gA
dp.transition[('A', 0, d), ('B', 3, d), t, 'none'] += zA

● From states (B, 0, d) for d = −20, . . . , 20 in stages t = 0, 1, . . . , T − 2:

State (B, 0, d)

In [13]: # Transition probabilities from (B, 0, d) up to stage T - 2
for t in range(T - 1):

for d in range(-max_d, max_d + 1):
dp.transition[('A', 6, min(d + 6, max_d)), ('B', 0, d), t, 'none'] += tA
dp.transition[('A', 3, min(d + 3, max_d)), ('B', 0, d), t, 'none'] += gA
dp.transition[('A', 0, d), ('B', 0, d), t, 'none'] += zA
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Transition probabilities from stage T − 1
● Now, we can tackle the transitions from stage T − 1.

● From states (A, 6, d) for d = −20, . . . , 20 in stage T − 1:

In [14]: # Transition probabilities from (A, 6, d) in stage T - 1
for d in range(-max_d, max_d + 1):

# 1-point conversion
dp.transition[('A', 6, min(d + 1, max_d)), ('A', 6, d), T - 1, 1] += pA
dp.transition[('A', 6, d), ('A', 6, d), T - 1, 1] += 1 - pA

# 2-point conversion
dp.transition[('B', 0, min(d + 2, max_d)), ('A', 6, d), T - 1, 2] += qA
dp.transition[('B', 0, d), ('A', 6, d), T - 1, 2] += (1 - qA)

● From states (A, 3, d) for d = −20, . . . , 20 in stage T − 1:
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In [15]: # Transition probabilities from (A, 3, d) in stage T - 1
for d in range(-max_d, max_d + 1):

dp.transition[('A', 3, d), ('A', 3, d), T - 1, 'none'] += 1

● From states (A, 0, d) for d = −20, . . . , 20 in stage T − 1:

In [16]: # Transition probabilities from (A, 0, d) in stage T - 1
for d in range(-max_d, max_d + 1):

dp.transition[('A', 0, d), ('A', 0, d), T - 1, 'none'] += 1

● From states (B, 6, d) for d = −20, . . . , 20 in stage T − 1:

In [17]: # Transition probabilities from (B, 6, d) in stage T - 1
for d in range(-max_d, max_d + 1):

dp.transition[('B', 6, max(d - 2, -max_d)), ('B', 6, d), T - 1, 'none'] += qB * b2
dp.transition[('B', 6, max(d - 1, -max_d)), ('B', 6, d), T - 1, 'none'] += pB * b1
dp.transition[('B', 6, d), ('B', 6, d), T - 1, 'none'] += 1 - pB * b1 - qB * b2

● From states (B, 3, d) for d = −20, . . . , 20 in stage T − 1:

In [18]: # Transition probabilities from (B, 3, d) in stage T - 1
for d in range(-max_d, max_d + 1):

dp.transition[('B', 3, d), ('B', 3, d), T - 1, 'none'] += 1

● From states (B, 0, d) for d = −20, . . . , 20 in stage T − 1:
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In [19]: # Transition probabilities from (B, 0, d) in stage T - 1
for d in range(-max_d, max_d + 1):

dp.transition[('B', 0, d), ('B', 0, d), T - 1, 'none'] += 1

Boundary conditions

● Finally, the boundary conditions:

fT(n, k, d) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if d > 0
r if d = 0
0 if d < 0

for n ∈ {A, B}, k ∈ {0, 3, 6}, d = −20, . . . , 20

In [20]: # Boundary conditions
for n in ['A', 'B']:

for k in [0, 3, 6]:
for d in range(-max_d, max_d + 1):

if d > 0:
dp.boundary[n, k, d] = 1

elif d == 0:
dp.boundary[n, k, d] = r

else:
dp.boundary[n, k, d] = 0

Solving the stochastic dynamic program
In [21]: # Solve the stochastic dynamic program

value, policy = dp.solve()

Interpreting output from the stochastic dynamic program

● What is the probability that Team A wins a er scoring a touchdown in the �rst possession?

In [22]: value[0, ('A', 6, 6)]

Out[22]: 0.7022345341399421

● What should Team A do a er scoring a touchdown in the �rst possession?

In [23]: policy[0, ('A', 6, 6)]

Out[23]: {1}
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● Suppose Team A just scored a touchdown, making it 4 points ahead. How does (1) the probability of Team A
winning and (2) Team A’s optimal strategy change depending on which possession this happened? Why do the
trends you identi�ed make sense?

Hint.Write a for loop that prints out the information you want.

In [24]: d = 4
for t in range(number_of_stages - 1):

print("Points ahead: {1} Possession: {0} Go for: {2} Pr(win): {3}"
.format(t, d, policy[t, ('A', 6, d)], value[t, ('A', 6, d)]))

Points ahead: 4 Possession: 0 Go for: {1} Pr(win): 0.6515937504061142
Points ahead: 4 Possession: 1 Go for: {1} Pr(win): 0.5953309554275077
Points ahead: 4 Possession: 2 Go for: {1} Pr(win): 0.6589513039084535
Points ahead: 4 Possession: 3 Go for: {1} Pr(win): 0.6007578375899824
Points ahead: 4 Possession: 4 Go for: {1} Pr(win): 0.6672665713194332
Points ahead: 4 Possession: 5 Go for: {1} Pr(win): 0.6068027252465114
Points ahead: 4 Possession: 6 Go for: {1} Pr(win): 0.6768164108937468
Points ahead: 4 Possession: 7 Go for: {1} Pr(win): 0.613684035194822
Points ahead: 4 Possession: 8 Go for: {1} Pr(win): 0.6879913865862931
Points ahead: 4 Possession: 9 Go for: {1} Pr(win): 0.6217164148463916
Points ahead: 4 Possession: 10 Go for: {1} Pr(win): 0.7013482767528225
Points ahead: 4 Possession: 11 Go for: {1} Pr(win): 0.6313550712721305
Points ahead: 4 Possession: 12 Go for: {1} Pr(win): 0.7177041574715131
Points ahead: 4 Possession: 13 Go for: {1} Pr(win): 0.6432826232060777
Points ahead: 4 Possession: 14 Go for: {1} Pr(win): 0.7383338660363578
Points ahead: 4 Possession: 15 Go for: {1} Pr(win): 0.6586346048446324
Points ahead: 4 Possession: 16 Go for: {1} Pr(win): 0.7654749169961569
Points ahead: 4 Possession: 17 Go for: {1} Pr(win): 0.6797448781490858
Points ahead: 4 Possession: 18 Go for: {1} Pr(win): 0.8038773271517671
Points ahead: 4 Possession: 19 Go for: {1} Pr(win): 0.7130320885162305
Points ahead: 4 Possession: 20 Go for: {1} Pr(win): 0.86647621838456
Points ahead: 4 Possession: 21 Go for: {2} Pr(win): 0.7836036276200001
Points ahead: 4 Possession: 22 Go for: {1, 2} Pr(win): 1.0
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