Lesson 19.

Solving the points-after-touchdown problem

Before we begin — upgrading and importing stochasticdp
e I've made some improvements to the internals of stochasticdp.

e To upgrade, open a WinPython Command Prompt and type:
pip install --upgrade stochasticdp

e Now we can import StochasticDP from stochasticdp:

In [2]: from stochasticdp import StochasticDP

Setting up the data

e In Lesson 18, we worked with the following data:

T = total number of possessions

Pn = Pr{l-pt. conv. successful for Team 7 |1-pt. conv. attempted by Team n}

qn = Pr{2-pt. conv. successful for Team 7| 2-pt. conv. attempted by Team n}

by = Pr{l-pt. conv. attempted by Team B}
b, = Pr{2-pt. conv. attempted by Team B}

t, = Pr{TD by Team n in 1 possession }
gn = Pr{FG by Team 7 in 1 possession }

zn = Pr{no score by Team 7 in 1 possession }

r = Pr{Team A wins in overtime}

Let’s begin by defining numerical values for this data.

We can find most of these values from Pro Football Reference.

For now, let’s assume that Team A and Team B are both average 2014 NFL teams.

o Recall that in 2014, 1-pt. conversions started at the 2-yard line.

Also, let’s assume that Team A wins in overtime with probability 0.5.

In [3]: # Total number of possessions
# Drive Averages: 2 x (#Dr) / (G x (# of teams))
T =23

# 1-pt. conversion success probabilities
# Kicking and Punting: XP%

pA = 0.993

pB = 0.993
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http://www.pro-football-reference.com/years/2014/

# 2-pt. conversion success probabilities
# Scoring Offense: 2PM / 2PA

gA = 0.483

gB = 0.483

# 1-pt. vs 2-pt attempts

# 1-pt.: Scoring Offense: XPA / (XPA + 2PA)
bl = 0.954

b2 =1 - bl

# Possession outcome probabilities - Team A
# TD: (Scoring Offense: ATD) / (Drive Averages: #Dr)
# FG: (Scoring Offense: FGM) / (Drive Averages: #Dr)
tA = 0.218
gA = 0.172
zA =1 - tA - gA
# Possession outcome probabilities - Team B
tB = 0.218
gB = 0.172
zB =1 - tB - gB
# Probability that Team A wins in OT
r=20.5
Initializing the stochastic dynamic program

e Stages:

t=0,1,...,T-1 <« endofpossession ¢

t=T <« endofgame

In [4]: # Number of stages
number_of_stages = T + 1

e States:

(n,k,d) < Team n’s possession just ended forn e {A,B}
Team # just scored k points for k € {0,3,6}
Team A is ahead by d points forde{...,-1,0,1,...,}

e In Lesson 18, we did not assume a lower or upper bound on d, the values that represent Team A’s lead.

e Since we need to have a finite number of states, let’s assume —20 < d < 20.

e Some Python reminders:

o We can construct a list by
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o first creating an empty list,
¢ and then adding items to it using .append().
o For example:

my_list = []
for i in range(10):
my_list.append(i)

o range(a) iterates over the integers 0, 1, ..., a - 1, while range(a, b) iterates over the integersa, a + 1,
.., b - 1.
In [5]: # Maximum lead for Team A

max_d = 20

# List of states

states = []

for n in ['A', 'B']:

for k in [0, 3, 6]:

for d in range(-max_d, max_d + 1):
states.append((n, k, d))

e Allowable decisions x; at stage t and state (n, k, d):

xr€{1,2} ifn=Aandk=6
x; =none ifn=Aandke{0,3}
x;=none ifn=Bandke{0,3,6}

In [6]: # List of decisions
decisions = [1, 2, 'none']

e Now we can initialize a stochastic DP object called dp as follows:

In [7]: # Initialize stochastic dynamic program - we want to maximize, so minimize = False
dp = StochasticDP(number_of_stages, states, decisions, minimize=False)

Transition probabilities from stages t = 0,1,..., T -2

e First, let’s tackle transitions from the state (A, 6,d) for d = —-20,...,20 in stages t = 0,1,..., T - 2:

e In Lesson 18, we assumed that d could take on an infinite number values.

On the other hand, here, we have limited d to be between —20 and 20.

How does this change our transition probabilities?

For example, suppose d = —17 in the diagram above. Then we can model the transition probabilities like this:
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In other words, if d is supposed to be less than —20, then we simply assume that it is the same as having d = -20.

We can do the same thing when d is supposed to be greater than 20.

To implement this easily, we can define the transition probabilities like in the cell below.

Notes.

o In Python,
a += 3
is the same as
a=a+3

o Remember that the transition probabilities and contributions are all initialized to 0.

In [8]: # Transition probabilities from (A, 6, d) up to stage T - 2
for t in range(T - 1):
for d in range(-max_d, max_.d + 1):
# 1-point conversion

dp.transition[('B', 6, max(d - 6, -max_d)), ('A', 6, d), t, 1] += (1 - pA) * tB
dp.transition[('B', 6, max(d - 5, -max_d)), ('A', 6, d), t, 1] += pA * tB
dp.transition[('B', 3, max(d - 3, -max.d)), ('A', 6, d), t, 1] += (1 - pA) * gB
dp.transition[('B', 3, max(d - 2, -max_.d)), ('A', 6, d), t, 1] += pA * gB
dp.transition[('B', 0, d), ('A", 6, d), t, 1] += (1 - pA) * zB
dp.transition[('B', O, min(d + 1, max_d)), ('A', 6, d), t, 1] += pA * zB

# 2-point conversion
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State (A, 0,d)

dp.transition[('B', 6, max(d - 6, -max_.d)), ('A', 6, d), t, 2] += (1 - gA) * tB
dp.transition[('B', 6, max(d - 4, -max_.d)), ('A', 6, d), t, 2] += gA * tB
dp.transition[('B', 3, max(d - 3, -max_.d)), ('A', 6, d), t, 2] += (1 - gA) * gB
dp.transition[('B', 3, max(d - 1, -max.d)), ('A', 6, d), t, 2] += gA * gB
dp.transition[('B', 0, d), ('A", 6, d), t, 2] += (1 - gA) * zB
dp.transition[('B', O, min(d + 2, max_.d)), ('A', 6, d), t, 2] += gA * zB
e In asimilar fashion, we can define the remaining transition probabilities.
e From states (A,3,d) ford = -20,...,20 in stages t =0,1,..., T - 2:
A B
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In [9]: # Transition probabilities from (A, 3, d) up to stage T - 2
for t in range(T - 1):
for d in range(-max_d, max_.d + 1):
dp.transition[('B', 6, max(d - 6, -max_.d)), ('A', 3, d), t, 'none'] += tB
dp.transition[('B', 3, max(d - 3, -max_.d)), ('A', 3, d), t, 'none'] += gB
dp.transition[('B', 0, d), (‘A', 3, d), t, 'none'] += zB
e From states (A,0,d) for d = -20,...,20 in stages t = 0,1,..., T — 2:
A B
no
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no no
LHB,O,L conv. Seore

In [10]: # Transition probabilities from (A, 0, d) up to stage T - 2

for t in range(T - 1):
for d in range(-max_d, max_d + 1):
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dp.transition[('B', 6, max(d - 6, -max_d)), ('A', 0, d), t, 'none'] += tB
dp.transition[('B', 3, max(d - 3, -max_d)), ('A', 0, d), t, 'none'] += gB
dp.transition[('B', 0, d), (‘A', 0, d), t, 'none'] += zB

e From states (B,6,d) ford = -20,...,20 in stages t =0,1,..., T - 2:
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State (B,6,d)

In [11]: # Transition probabilities from (B, 6, d) up to stage T - 2
for t in range(T - 1):
for d in range(-max_d, max_d + 1):
dp.transition[('A', 6, min(d + 6, max.d)), ('B', 6, d), t, 'none']l += (1 - bl+pB - b2xqgB) * tA
dp.transition[('A', 3, min(d + 3, max.d)), ('B', 6, d), t, 'none']l += (1 - bl+pB - b2xqgB) * gA
dp.transition[('A', 0, d), ('B', 6, d), t, 'none'] += (1 - bl*pB - b2xqB) * zA

dp.transition[('A', 6, min(d + 5, max_.d)), ('B', 6, d), t, 'none'] += bl * pB * tA
dp.transition[('A', 3, min(d + 2, max.d)), ('B', 6, d), t, 'none'] += bl * pB * gA

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan 7



dp.transition[('A', 0, max(d - 1, -max_d)), ('B', 6, d), t,
dp.transition[('A', 6, min(d + 4, max_d)), ('B', 6, d), t,
dp.transition[('A', 3, min(d + 1, max_-d)), ('B', 6, d), t,
dp.transition[('A', 0, max(d - 2, -max_d)), ('B', 6, d), t,
e From states (B,3,d) ford = -20,...,20 in stages t =0,1,..., T -2
tel
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__________ 3 +|
5.3 @ ¢ A, 3,443
Gy
b+l
Ao d
State (B, 3,d)

In [12]: # Transition probabilities from (B, 3, d) up to stage T - 2
for t in range(T - 1):
for d in range(-max_d, max_.d + 1):
dp.transition[('A', 6, min(d + 6, max_d)),
dp.transition[('A', 3, min(d + 3, max_.d)),
dp.transition[('A', 0, d),

e From states (B,0,d) ford = -20,...,20 in stages t =0,1,..., T - 2:

U
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State (B,0,d)

In [13]: # Transition probabilities from (B, 0, d) up to stage T - 2
for t in range(T - 1):
for d in range(-max_d, max_.d + 1):
dp.transition[('A', 6, min(d + 6, max_.d)), ('B', 0
dp.transition[('A', 3, min(d + 3, max.d)), ('B', 0,
dp.transition[('A', 0, d), ('B 0
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Transition probabilities from stage T -1

e Now, we can tackle the transitions from stage T — 1.

e From states (A, 6,d) for d = -20,...,20 in stage T - 1:
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In [14]: # Transition probabilities from (A, 6, d) in stage T - 1

for d in range(-max_d, max_d + 1):
# 1-point conversion

dp.transition[('A', 6, min(d + 1, max_d)),

dp.transition[('A', 6, d),

# 2-point conversion

dp.transition[('B', 0, min(d + 2, max_d)),

dp.transition[('B', 0, d),

e From states (A, 3,d) ford = -20,...,20 in stage T — 1:

[

-1, 1] += pA

.
(‘A', 6, d), T-1,1] += 1 - pA

‘A', 6, d), T -1, 2] += qA
A

', 6,d), T -1, 2] += (1 - gA)
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In [15]: # Transition probabilities from (A, 3, d) in stage T - 1
for d in range(-max_d, max_d + 1):
dp.transition[('A', 3, d), ('A', 3, d), T - 1, 'none'] += 1

e From states (A,0,d) for d = -20,...,20 in stage T — 1:

In [16]: # Transition probabilities from (A, 0, d) in stage T - 1
for d in range(-max_d, max_d + 1):
dp.transition[('A', O, d), ('A', 0, d), T - 1, 'none'] +=1

e From states (B, 6,d) for d = -20,...,20 in stage T — 1:
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In [17]: # Transition probabilities from (B, 6, d) in stage T - 1
for d in range(-max_d, max.d + 1):
dp.transition[('B', 6, max(d - 2, -max.d)), ('B', 6, d), 'none'] += gB * b2
dp.transition[('B', 6, max(d - 1, -max_.d)), ('B', 6, d), 'none'] += pB * bl
dp.transition[('B', 6, d), ('B', 6, d), T-1, 'none'] += 1 - pB * bl - gB * b2

e From states (B,3,d) for d = -20,...,20 in stage T — 1:

|
- T

In [18]: # Transition probabilities from (B, 3, d) in stage T - 1
for d in range(-max_d, max_d + 1):
dp.transition[('B', 3, d), ('B', 3, d), T - 1, 'none'] += 1

e From states (B,0,d) for d = —20,...,20 in stage T — 1:

10 Lesson 19. Solving the points-after-touchdown problem



\\_// ‘T&o,&

In [19]: # Transition probabilities from (B, 0, d) in stage T - 1
for d in range(-max_d, max_d + 1):
dp.transition[('B', 0, d), ('B', 0, d), T - 1, 'none'] += 1

Boundary conditions

e Finally, the boundary conditions:

1 ifd>0
fr(n,k,d)=<r ifd=0 forne {A,B},ke{0,3,6},d=-20,...,20
0 ifd<0

In [20]: # Boundary conditions
for n in ['A', 'B']:
for k in [0, 3, 6]:
for d in range(-max_d, max_.d + 1):
if d > 0:
dp.boundary[n, k, d]
elif d == 0:
dp.boundary[n, k, d] = r
else:
dp.boundary[n, k, d]

1l
=

Il
(o)

Solving the stochastic dynamic program

In [21]: # Solve the stochastic dynamic program
value, policy = dp.solve()

Interpreting output from the stochastic dynamic program

e What is the probability that Team A wins after scoring a touchdown in the first possession?

In [22]: value[0, ('A', 6, 6)]
Out[22]: 0.7022345341399421
e What should Team A do after scoring a touchdown in the first possession?
In [23]: policy[0O, ('A', 6, 6)]

Out[23]: {1}
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e Suppose Team A just scored a touchdown, making it 4 points ahead. How does (1) the probability of Team A
winning and (2) Team A’s optimal strategy change depending on which possession this happened? Why do the
trends you identified make sense?

Hint. Write a for loop that prints out the information you want.

In [24]: d = 4
for t in range(number_of_stages - 1):
print("Points ahead: {1} Possession: {0} Go for: {2} Pr(win): {3}"
.format(t, d, policy[t, ('A', 6, d)], value[t, ('A', 6, d)1))

Points ahead: 4 Possession: 0 Go for: {1} Pr(win): 0.6515937504061142
Points ahead: 4 Possession: 1 Go for: {1} Pr(win): 0.5953309554275077
Points ahead: 4 Possession: 2 Go for: {1} Pr(win): 0.6589513039084535
Points ahead: 4 Possession: 3 Go for: {1} Pr(win): 0.6007578375899824
Points ahead: 4 Possession: 4 Go for: {1} Pr(win): 0.6672665713194332
Points ahead: 4 Possession: 5 Go for: {1} Pr(win): 0.6068027252465114
Points ahead: 4 Possession: 6 Go for: {1} Pr(win): 0.6768164108937468
Points ahead: 4 Possession: 7 Go for: {1} Pr(win): 0.613684035194822
Points ahead: 4 Possession: 8 Go for: {1} Pr(win): 0.6879913865862931
Points ahead: 4 Possession: 9 Go for: {1} Pr(win): 0.6217164148463916
Points ahead: 4 Possession: 10 Go for: {1} Pr(win): 0.7013482767528225
Points ahead: 4 Possession: 11 Go for: {1} Pr(win): 0.6313550712721305
Points ahead: 4 Possession: 12 Go for: {1} Pr(win): 0.7177041574715131
Points ahead: 4 Possession: 13 Go for: {1} Pr(win): 0.6432826232060777
Points ahead: 4 Possession: 14 Go for: {1} Pr(win): 0.7383338660363578
Points ahead: 4 Possession: 15 Go for: {1} Pr(win): 0.6586346048446324
Points ahead: 4 Possession: 16 Go for: {1} Pr(win): 0.7654749169961569
Points ahead: 4 Possession: 17 Go for: {1} Pr(win): 0.6797448781490858
Points ahead: 4 Possession: 18 Go for: {1} Pr(win): 0.8038773271517671
Points ahead: 4 Possession: 19 Go for: {1} Pr(win): 0.7130320885162305
Points ahead: 4 Possession: 20 Go for: {1} Pr(win): 0.86647621838456
Points ahead: 4 Possession: 21 Go for: {2} Pr(win): 0.7836036276200001
Points ahead: 4 Possession: 22 Go for: {1, 2} Pr(win): 1.0
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